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This paper describes a theoretical investigation into (i) the response of a spherical 
particle to a one-dimensional fluid flow, (ii) the motion of a spherical particle in a 
uniform two-dimensional fluid flow about a circular cylinder and (iii) the motion 
of a particle about a lifting aerofoil section. In  all three cases the drag of the 
particle is allowed to vary with (instantaneous) Reynolds number by using an 
analytical approximation to the standard experimental drag-Reynolds-number 
relationship for spherical particles. 

1. Introduction 
The prediction of particle velocities and trajectories in fluid flow is of a con- 

siderable importance in many fields. In studying the erosion damage sustained 
by nozzles or blades in steam or gas turbines, where these parts are subjected to 
the flow of a mixture of gas and solids or gas and water drops, Martlew (1960) and 
Neilson & Gilchrist (1968) have found that the erosion depends on the wall 
material, the particle velocity and the angle of attack. Similarly, in the design of 
inertia and impingement filters, the prediction of particle trajectories will be of 
great help in assessing the efficiency of these filters in capturing solid particles 
from the carrier fluid. 

In the case of flow through a turbine it is desirable for particles not to contact 
the blades whereas in flow through a filter the opposite effect is needed. In either 
case it is necessary to know what path a particle will take and although calcula- 
tions have been made by Langmiur & Blodgett (1946) and Michael & Norey 
(1969), it is usual to assume that the particle Reynolds number is small and that 
the Stokes linear approximation to the drag coeficient (C, = 24/RN) will be valid. 
This is not always the case and at sufficiently high Reynolds numbers very large 
errors will result from the use of this formula. In  this paper an expression for the 
drag coefficient which closely approximates to the standard experimental drag- 
Reynolds-number relationship is used to give an analytical solution in the case of 
one-dimensional flow and to save computation time in the case of two-dimen- 
sional flow. 
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FIGURE 1. Drag coefficient for spherical particles vs. Reynolds number. 

2. Response of a spherical particle to a one-dimensional fluid flow 
When a particle, or a cloud of particles of low concentration, is introduced into 

an air stream the response of the particle depends on the relative velocity of the 
particle and the fluid. This relative velocity determines the drag, which is the 
sole force determining the motion of the particle if it  is assumed that there is no 
particle interaction and further that the presence of the particles does not change 
the basic flow pattern. 

The equation of motion of a single particle is 

m,dUp/dt = c d  x +pg(Ug- Up)* A,, (1) 

where the subscriptp refers to the particle and the subscript g to the gas; A,is the 
surface area of the particle. The mass of a spherical particle is given by 

mp = &~Dzp,. (2) 

The drag coefficient c d  for a spherical particle is plotted against the Reynolds 
number RN in figure 1. The Reynolds number for a spherical particle is given by 

RN = P g ( U g - q P p I P -  (3) 

At very small Reynolds numbers (RN - 0-I), the flow is known as Stokes flow 
and under these conditions C, = 24/RN. Solutions obtained using this condition 
are given by Zenz & Othmer (1960). At very high Reynolds numbers (RN N 103) 
the value of C, becomes approximately constant a t  about 0.4, but in the inter- 
mediate range of RN, which is the range of practical interest, c d  varies with RA, in 
a complicated manner. Many empirical formulae have been suggested but these 
are suitable only in certain region. In  the present paper C, is calculated a t  the 
correct Reynolds number and is always within 1-2% of the experimental 
value. 
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RN 

0.1 
0.2 
0.3 
0-5 
0.7 
1.0 
2.0 
3.0 
5.0 
7.0 

10.0 
20.0 
30.0 
50.0 
70.0 

C d  ca ca 
(experimental) (calculated) RN (experimental) 

240.0 
120.0 
80.0 
49.0 
36.5 
26.5 
14-4 
10.4 
6.9 
5.4 
4.1 
2.55 
2.00 
1.50 
1.27 

240-01 
119.59 
80-45 
49.501 
36.335 
26-503 
14.833 
10.51 
6.9 
5-31 
4.1 
2.65 
2-03 
1-50 
1-257 

100.0 
200.0 
300.0 
500.0 
700.0 

1000~0 
2000~0 
3000.0 
5000.0 
7000*0 

10 000.0 
20 000.0 
30 000.0 
50 000.0 

1.07 
0.77 
0.65 
0.55 
0.50 
0.46 
0.42 
0.40 
0-385 
0,390 
0.405 
0.45 
0.47 
0.49 

TABLE 1. Drag coefficient for sphericaI particles 

Cd 
(calculated) 

1.07 
0.771 
0.6613 
0-55 
0.4991 
0.46 
0.42 
0.4016 
0.385 
0.391 
0.410 
0.452 
0.4697 
0.488 

In  order to obtain this accuracy the experimental drag curve is divided into 
a number of regions and the curve in that region is approximated to by an 

Kl K’2 C d = - + - + K 3 .  
equation of the form 

RN R% (4 )  

This curve can be made to fit the experimental curve at  three points, and the 
width of the region chosen is adjusted so that the discrepancy between the two 
curves is negligible, see table 1. The range of Reynolds numbers taken is 
0.1-5 x lo4. In  the appendix the values of the constants and the drag coefficient 
equations are given. 

The advantage of using ( 4 )  is that (1) can be solved analytically and the errors 
associated with numerical techniques avoided. Equation (1) may be written as 

dU,/dt = $1-$2Up+A1Ui, (6) 

where 

A1 = 3K3PgI4DpPp .  (5) 
Equation (5) is a form of the Riccati equation with constant coefficients if U, is 

constant. Under these circumstances an analytic solution can be obtained. For 
U, variable the equation can be reduced to the Abel form, in which case an analytic 
solution can be obtained only for certain types of velocity function. 

For constant velocity U, (5) becomes 

dU,I(U, - r l J  (Up - 72) = AIdt, 

7 1 . 2  = $ 2 / 2 4  rt [ ( $ 2 / 2 4 2  - 4 1 / 4 1 * *  

(9) 

(10) 

where rl and y 2  are the roots of the right-hand side of (5) and are given by 

13-2 
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Equation (9) can be solved analytically, and if the particle initial conditions are 
UP = UP, and x = xo when t = to, then for rl = q2 

for ql $. q2 and real 

UP = 72 - {71(u,O - 72)/($0 - 71)) exp [ 4 ( 7 ,  -71) (t  - tol l  

up = 0%0+ O2 - ($2/2Al) (Up0 - $ 2 / 2 4 )  tan 0.4 ( t  - t o )  

1-{(u,0-72)/(UP0-71)}exP [A1(72-71) (t-to)l 

and for rl + v2 and imaginary 

0 - (Up, - $,/2A1) tan OAl(t - to) 9 

where 

When the Reynolds number is less than 0-1 equation (9) reduces 

0 = ($l/AI) - ($2/2AA2. 

dU,/dt = $1 - $2 UP, 
and its solution is given by 

In some cases it is convenient to obtain the distance x travelled by the particle 
as a function of the velocity. To obtain such relationship, (5) can be rewritten in - 

the following form: 
UPdUP/dx = $1-$2UP+AlU~.  

The solution of this equation is 

(18) 

for 71 = 72, 

for 71 * 72 

x = x o + - ( ~ l o g ( + - -  1 up - 72 71 log(-)) (19) 
4 72-71 $0-72 72-71 Upo-71 

and 

for RN < 0.1, 
In this section a method has been given for obtaining an analytical solution for 

the equation of motion of a single particle, within any of the regions of Reynolds 
numbers required, in the horizontal direction. In  the case where the actual 
trajectory of the particle is required, an equation similar to (5) has to be 
solved for the vertical direction and to include effect of gravity in such equa- 
tion, the gravitational acceleration g has to be subtracted from the value 

Figures 2 (a)  and ( b )  show the change in the particle velocity with the change in 
the distance x from the particle inlet to an air stream for pasticles of diameter 
50pm and 100pm and particle densities of 870 and 1400kg/m3. 

of $1. 
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FIGURE 2. Ratio of particle velocity to air velocity ‘us. distance. - - -, D, = 50 pm; 
-, D ,  = 100 ,urn. (a) p, = 870 kg/rn3. (b) pp = 1400 kg/m3. 

3. Collision of spherical particles with a cylinder 
Michael & Norey considered the case of particle collision with a sphere and 

obtained a numerioal solution for Stokes flow (R, < 0.1). In  this paper the case 
of flow round a circular cylinder is considered but with no restriction on the 
particle Reynolds number. The equation of motion (1) is used but with a variable 
velocity qJ obtained from the two-dimensional inviscid flow past a circular 
cylinder. 

The inviscid flow solution for flow past a circular cylinder is well known. In a 
real flow, separation occurs on the rear of the cylinder but o n  the upstream half 
the inviscid solution is a reasonable approximation to the real flow. The velocity 
field is obtained from the stream function +, given by 

4 = uy - Uia2y/(x2 + y”, (21) 

where U is the uniform undisturbed velocity some distance upstream of the 
cylinder. 

The horizontal and vertical velocity components UQ and V,  are given by 

a@ 2Ua2xy y, - -=-  
Q ax (x2 + y2)2. 

(23) 

These satisfy the equation of continuity 

au,/ax+ av,py = 0. (24) 

Apart from the drag force, another force acts on the spherical particles when they 
move through a velocity gradient. Owing to the difference in velocity, and hence 
pressure between the top and bottom of the particle when in a velocity gradient, 
a lift force acts on the particle. The value of the lift coefficient was derived by 
Saffman (1965) and is given by 

CL = 6.46pD; R4/4d, (25) 
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where R is the rate of shear and can be obtained by differentiating (22) and (23). 
The rate of shear in both directions is identical and is given by 

Both drag and lift forces are introduced into the equations of motion, which 

mpdUp/dt = & c d , P , n D ~ ( ~ - u p ) 2  kc~('VQ-5)~ (27) 

mPclV,/clt = &Cd,f,nD:(c-&)2 i-CL(Ug--Up), (28) 

become 

where the subscripts h and v stand for horizontal and vertical respectively. 

equations (27) and (28) become 
Using the appropriate value of C, from (4) and the value of CL from (25), 

dUPldt = 9 4 1 -  A 2  up + A,, u; k 4'v, '  (29) 

d&ldt = ~ c l l - ~ c 2 2 K 3 + + C l l V p 2  + v ? p ,  ( 3 0 )  

The simultaneous equations (29) and ( 3 0 )  were solved numerically using 
Runge's method. Three solutions are given in figures 3(a ) - ( c )  for the following 
cases. The fluid is air, Dp = lOpm, 20,um or lOO,um, p p  = 1400kg/m3, U = 6 m/s 
and the cylinder diameter = 25 mm. The particles were introduced into the flow 
with zero velocity a t  a distance of 75 mm from the y axis. 

The above examples were solved once more but with the lift force due to the 
rate of shear excluded (i.e. with C, = 0 in (27) and (28)). The difference between 
these results and those including the lift force is negligible. Hence the effect of the 
lift forces is very small compared with that of the drag forces in this range of 
particle parameters. 

4. Collision of spherical particle with a lifting aerofoil 
The transformation 

will transform a circle of a radius a in the <plane to the Joukowsky symmetrical 
aerofoil in the 2 plane (see figure 4). I f  E is zero then the circle is transformed to 
a flat plate. On the other hand if E is positive the aerofoil obtained has a thickness 
proportional to E. A non-symmetrical aerofoil can be obtained by making E 

complex. 
The value of I and the length of the chord C are given by 

I = a / ( l + e ) ,  

C = 41[1 +e2Z/(a+d)]. 
(32) 

(33 )  



Particle trajectories in two-phase $ow systems 

- 25 

I I I I I I 1 I 
25 

- 25 
I I I I I I I 1 

I I I I I I 2s ‘ I I I 

- 25 

FIGURE 3. Particle trajectories in the vicinity of a circular cylinder. U = 6 m/s, 
pI,  = 1400 kg/m3. (a) D ,  = 1OOpm. (b)  D ,  = 1Opm. (c) D ,  = 20pm. 
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I 
FIGURE 4. Transformation of a circle to a Joukowsky aerofoil. 

(a) 5 plane. (5) 2 plane. 

The stream function $ of a potential flow round a cylinder in the cplane is given by 

II. = UY[l- a2/(t2 + r2)1, (34) 

where 5 = c + iq. For the flow to leave the trailing edge of the aerofoil with finite 
velocity (the Kutta-Joukowsky condition) a circulation term has to be added to 
the above stream function, which becomes 

From the above stream function the velocity components in the plane of the 
cylinder can be obtained; these are given by 

The value of the circulation K which satisfies Kutta-Joukowsky condition in the 
case of a symmetrical aerofoil is given by 

(38) K = 2aU sina. 

The velocity components in the aerofoil plane can be obtained from the following 
relationship : 

dw dwdc  
(39) _ -  --- 

dx dc dz' 

where w is the complex potential and equal to 

w = *+ i$ ;  

the velocity components in the Z and 5 planes are given by 

- V,  + iV? = dw/dz, 

- Ug+iV, = dw/dc. 
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By substituting the values of dwldz and dw/d< from (41) and (42) into (9), 
differentiating (1) with respect to < and substituting the results into (39) a 
relationship between the velocity components in the aerofoil plane and those in 
the < plane can be obtained. 

4.1. The equations of motion of a particle near an aerofoil 

The equations of motion of a particle in the vicinity of an aerofoil are the same 
as those for the case of a cylinder. Equations (29) and (30) for the case of an 
aerofoil can be solved numerically if the values of U, and V, are known. To obtain 
the velocity components in the aerofoil plane the velocity components in the 
cylinder plane have to be calculated first. Therefore, a reversed transformation 
from the plane of the aerofoil, back to the plane of the cylinder is required. This 
can be done by reversing the transformation equation (31), i.e. by obtaining two 
relationships fort and7 in terms of xand y. This reversed transformation givesfour 
points (<, 7) in the <plane which satisfy the transformation equation. The correct 
point is the one which falls in the corresponding quadrant and occupies a similar 
position relative to the cylinder. After determining the point in the plane of the 
cylinder, thevelocity components Ucand Fcan be calculated from (36) and (37), 
and from (39), (41) and (42) the velocity components U, and V ,  can be obtained. 
Once the values of the velocity components are known the drag coefficient can be 
determined from (4). By substituting these values into (29) and (30) and solving 
numerically using the Runge-Kutta method, the velocity after a time dt can be 
obtained. By considering the particle to be moving with the average velocity the 
co-ordinate of the new position of the particle is obtained. At the new point the 
velocity of the air flow is unknown and the point has to be transformed back to the 
plane of the cylinder. A computer program has been written to carry out these 
calculations and to trace the particle trajectory, see figure 5. 

Figure 6(a )  shows the particle trajectories for the case of an aerofoil trans- 
formed from a circle of radius a = 12.5 mm by using (1) with E = 0-1 and an angle 
of the incidence (of the aerofoil to the flow) a = 5". The particle parameters used 
are Dp = lOpm, p p  = 1400kg/m3 and U = 6 m/s; the fluid is air. Figure 6 (b )  shows 
the particle trajectory for the above case but with a = 15". 

By putting E = 0 the circle is transformed to a flat plate, and the particle 
trajectories take the shapes shown in figures 7 (a )  and (b).  The particle parameters 
used in this case are Dp = 10 or lOOpm, p p  = 1400kg/m3 and U = 6m/s. 
Figures 8 (a )  and (b )  show the particle trajectories for the case given in figure 6, 
except that the particle diameter is taken to be 1OOpm and the aerofoil is inclined 
a t  angles a = 0 and 15" respectively. Also, figure 9 shows the particle trajec- 
tories in the case of an aerofoil for the following parameters: a = 5" or 15", 
pp = 1400kg/m3, U = 12m/s and Dp = 10 or 10Opm. In  all these cases the 
particles were admitted at a distance of 75 mm. 

4.2. Discussion of results 

Figures 6 (a )  and (b)  show the effect of changing the incidence from 5' to 15" on a 
12 yo thick symmetrical Joukowsky aerofoil for an air speed of 6 m/s and particle 
size and density of 10pm and 1400 kg/m3 respectively. Owing to the fact that the 
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FIQURE 5. Flow diagram. 

velocity field of the aerofoil causes particles which are initially outside the pro- 
jected (vertical) area of the aerofoil to collide with it, the normal definition of 
collision efficiency as applied to a cylinder is not valid. In this case, therefore, we 
define the collision efficiency as the initial vertical area of the powder flow which 
collides with the aerofoil to the vertical projected area of the aerofoil. These 
efficiencies are 0.79 and 0-81 respectively for a = 5" and 15". In  the case ofa = 15" 
a considerable displacement of the flow occurs. 

Comparison of figures 6 (b )  and 7 (a) shows the effect of thickness for U = 6 m/s, 
p p  = 1400kg/m3, D, = lOpm and a = 15'. The collision efficiency has increased 
to 0.93 for the flat-plate section. In  figure 7 ( b )  the particle size is increased to 
100pm and the collision efficiency rises to 1-16. This increase in efficiency is due 
to the fact that fewer of the larger particles are deflected past the aerofoil by the 
velocity field near the aerofoil nose. 

Figure 8 (a)  shows the effect of gravity only, the aerofoil being at zero incidence. 
The collision efficiency is 0-92. At 15" incidence, see figure 8 (b ) ,  the efficiency rises 
to 1-10 and there is an indication from the particle paths that some concentration 
of deposits could be expected a t  the leading edge. A similar effect has been found 
experimentally by Parker & Ryley (1970). 
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FIGURE 6. Particle trajectories near an aerofoil. U = 6 m/s, D ,  = 10 pm, 
p, = 1400 kg/ma. (a) a = 5". ( b )  a = 15". 

In  figures 9(a)-(d) the air speed has been increased to 12m/s with resultant 
particle efficiencies of 0.78, 1.09, 0.88 and 1.05 respectively. The collision 
efficiencies for the 10,um particles, figures 9(a) and (c), have not changed signifi- 
cantly from the results a t  6 m/s, i.e. 0.79 and 0.81, in figures 6 (a) and ( 6 ) .  E'or the 
larger (100 pm) particles also the collision efficiency is the same at  the two speeds. 

5. Discussion and conclusions 
5.1. Response of powder particle to air flow 

From figure 2 i t  is seen that the accelerating length of a particle, from the point of 
its feed to the air stream, depends on the particle diameter and density and the 
velocity of air stream. Also, if this analysis is used for the case of dilute-phase 
transport in pipes, it is obvious that the accelerating length depends on the 
loading ( W )  as well. Therefore the accelerating length is a function of U,D,p,( W/g) 
for a given gas. Zenz (see Zenz & Othmer) suggested that the accelerating length 
is function of W/pgUg. These conclusions are near to each other, the difference 
being that the effect of Reynolds number appears in the first formula through the 
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FIGURE 7 .  Particle trajectories near a flat plate. a = 15", U = 6 m/s, 
p p  = 1400 kg/ms. (a) D, = 10 ,urn. (b)  D ,  = 100 ,urn. 

particle diameter, and through the fluid density in the second. However, in the 
second group if the loading is changed by changing the particles' density the 
accelerating length will change, contrary to the conclusion reached by RUSS, 
Culgan & Hinkle. On the other hand in the first group the accelerating length does 
not change by changing the particles' density and hence the loadinq. 

The case in which the particles material is Tenite, particle diameter = 2.5 mm, 
air velocity = 34.5 m/s and loading W = 130 kg/s m2 has been solved using this 
analysis and it agrees exactly with the curve given by Hinkle for the above case 
and reported by Zenz & Othmer. Loading is defined here as the weight of the 
particle passing through a unit area. 

5.2. Collision of powder particles with a cylinder 

From figure 3(a )  it is obvious that, owing to the effect of gravity, the particle 
trajectories are no longer symmetrical about the n: axis and the possibility of 
collision with the upper half of the cylinder will be more than that in the lower 
half. Also, it can be deduced that the particle admitted a t  the point ( -  75, 12.5) 
will graze the cylinder, while it is the particle admitted at the point ( -  75, - 9) 



Particle trajectories in two-phase $ow systems 

I I 25' 

205 

FIGURE 8. Particle trajectories near an aerofoil. U = 6 mls, D ,  = 100 pm, 
ps  = 1400 kg/m3. (a) tc = 0. ( b )  tc = 15'. 

in the lower half that will graze the cylinder. From this it can be concluded that 
the simplification of neglecting the effect of gravity is unjustified even in cases 
with particle diameter and density as low as 1OOpm and 1400 kg/m3 respectively. 

From figure 3 (b )  it can be shown that the particles of small diameter (1Opm) 
will follow to some extent the air streamlines. Hence the particles will not collide 
with the cylinder except in the very small region which reaches the cylinder near 
the stagnation point. 

On comparing these results with that of Michael (seeMichael & Norey 1969) we 
find large differences. This is because Michael has assumed that the flow is a 
Stokes flow and the drag coefficient is 24/RN, which is far less than the experi- 
mental values when the Reynolds number exceeds 0.3. Furthermore, in case of 
large-diameter particles, the trajectories of the particles which do not collide 
with the cylinder spread away from the cylinder, while those of small-diameter 
particles converge towards the x axis. From the high-speed films taken for the 
case of the cylinder, it  is apparent that the trajectories of the large particles do 
spread after passing the cylinder, while the small-diameter particles converge to 
form vortices behind the cylinder. 
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FIGURE 9. Particle trajectories near an aerofoil. U = 12 rn/s,p, = 1400 kg/m3. (a)a = 5 O ,  
D, = 10,um. (b)  a = 5 O ,  D, = 100 ,urn. (c)  a = 15", D ,  = 10 ,urn. (d) a = 15", D, = 100 pm. 
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5.3. Collision of particles with an aerofoil 
The effects of particle size and density, the airspeed, aerofoil thickness and 
incidence on particle trajectories in the vicinity of the lifting aerofoil have been 
studied and the following general conclusions obtained. 

(i) The effect of aerofoil thickness on the collision efficiency is not large 
( -  10 yo) a t  high ( N 15") incidence, This indicates that the aerodynamic (lift) 
effect predominates over the thickness effect. However, at very small angles of 
incidence ( N 0 )  a larger number of particles in a given flow will collide with the 
thicker section although the collision efficiency may not be greatly changed. 

(ii) Smaller particles are affected by the aerofoil velocity field to a much larger 
extent than the large particles and tend to follow the streamlines more closely. 
Practically, this would result in higher collision efficiencies for larger particles in 
any given situation because fewer particles are deflected past the aerofoil nose by 
the upward velocities due to lift. If the lift is small (low incidence) the effects of 
gravity could modify this conclusion. 

(iii) There is evidence in some cases that concentration of particles can be 
expected to occur near the leading and trailing edges. This is supported by some 
experimental results. 

(iv) When the air speed was increased from 6 to 12 m/s there was very little 
change in the collision efficiency for either the small (10pm) particles or the 
larger (100 pm) particles. Thus for a lifting body the trend is rather different from 
the case of particle collision with a non-lifting body, for which, in general, the 
collision efficiency rises with speed. 

Appendix 
The drag coefficient equations used are 

ca = 24.0/RN for RN < 0.1, 

Ca = 22.73/R,+0*0903/R2,+ 3.69 for 0.1 < RN < 1.0, 

Ca = 29.1667/R,-3.8889/RK+ 1.222 for 1.0 < RN < 10.0, 

C, = 46.5[RN- 116.67/R&+O.6167 for 10.0 < RN < 100.0, 

Ca = 98.33/RN - 2778/R$ + 0.3644 for 

Ca = 148-62/RN-4-75 x 104/R%+0*357 

Ca = - 490*546[RN+ 57.87 x 104/R2, + 0.46 

Ca = - 1662.5/RN+5.4167 x lO'/R&+0*5191 

100.0 < RN < 1000*0, 

for 1000*0 < RN < 5000*0, 

for 5000.0 < RN < 10000*0, 

for 10000.0 < RN <[50000.0. 
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